An Efficient Bound for the Condition Number of the Matrix Exponential
نویسنده
چکیده
A new bound for the condition number of the matrix exponential is presented. Using the bound, we propose an efficient approximation to the condition number, denoted by κg(s,X), that avoids the computation of the Fréchet derivative of the matrix exponential that underlies condition number estimation in the existing algorithms. We exploit the identity eX = (eX/2 s )2 s for a nonnegative integer s with the properties of the Fréchet derivative operator to obtain the bound. Our cost analysis reveals that considerable computational savings are possible since estimating the condition number by the existing algorithms requires several invocation of the Fréchet derivative of the matrix exponential whose single invocation costs as twice as the cost of the matrix exponential itself. The bound and hence κg(s,X) only involve Fréchet derivative of a monomial of degree 2s, which can be computed exactly in 2s matrix multiplications. We propose two versions of the scaling and squaring algorithm that implement κg(s,X). Our numerical experiments show that κg(s,X) captures the behavior of the condition number and moreover outperforms the condition number in the estimation of relative forward errors for a wide range of problems.
منابع مشابه
The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملSolution of Troesch's problem through double exponential Sinc-Galerkin method
Sinc-Galerkin method based upon double exponential transformation for solving Troesch's problem was given in this study. Properties of the Sinc-Galerkin approach were utilized to reduce the solution of nonlinear two-point boundary value problem to same nonlinear algebraic equations, also, the matrix form of the nonlinear algebraic equations was obtained.The error bound of the method was found. ...
متن کاملA new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کاملThe lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کامل